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ABSTRACT
We consider the mathematical behavior of a viscous, incompressible fluid
bounded above by an atmogphere of constant pressure and below by a horizontal

bottom. After reviewing the existence and reqularity theory for the equations

governing the motion, we establish rates of decay for solutions near

equilibrium. The function describing the height of the free surface decays
A -

like t 72 ;7 the velocity field decays like ¢t 1. These estimates are shown

first for the linearization about equilibrium and then for the full nonlinear

problem. Complete details will be given elsewhere.

2
.
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SIGNIFICANCE AND EXPLANATION

One primary purpose of mathematical analysis is to describe the behavior
of solutions of equations representing physical phenomena. The results shed
light on the validity of the mathematical model as a representation of the
physical process and may in turn offer new information about the phenomena.
For the problem considered here, the motion near equilibrium of a viscous
fluid bounded by a free surface, fundamental properties of existence and
regularity were established by the first author in earlier work. This paper
continues the study by describing further the behavior of solutions over a
horizontal bottom. Solutions decay at a fixed rate because of the effect of
viscosity in the interior of the fluid. The glow rate of decay is determined

by the behavior of long wavelengths in the linearization about equilibrium.
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LARGE-TIME BEHAVIOR OF VISCOUS SURFACE WAVES

Je« Thomas Beale* and Takaaki Nishida"

t1. Introduction.

We are concerned with solutions global in time to a free
surface problem of a viscous 1ncompressi$1¢ fluid, which is
formulated as follows: The motion of the fluid is governed by

the Navier-Stokes equations

u, + (uv)u - vdu + vp = 0
(1.1) } in a(t),
v -usy90

where 2(t) = (x e Rz, -b <y <g(t,x)}) 1is the domain occupied

by the fluid. The free surface spz Yy = n(t,x) satisfies the

kinematic boundary condition

(1.2) 74 + uqul + uquz - uy = 0 on s,.

The stress tensor satisfies the free boundary condition:

*Department of Mathematics, Duke University, Durham, NC 27706
**Department of Mathematics, Xyoto University, Kyoto, 606 Japan
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(1.3) pni - u(ui'x + uj'x )nJ = ' S
J 1 .7‘;--“.

A\:.-- g

\.‘-.\“

. B':’:'::‘

- . L‘)....‘

[gn - Av((1 + |vn]?) 1/"’wr}]n1 on S, UG

where n is the outward normal to S, ¢ is the acceleration

of gravity and A is the nondimensionalized coefficient of sur-

’ . .."-:".'
¢ SR

face tension. On the bottom SB: Yy = -b we have the fixed

R
boundary condition t@&
NS
(1.4) us=0 on Sg- R

We assume here that b is constant, although Theorem 1.1 below
holds for b = b(x).

We consider the initial value problem (1.1)-(1.4) with the .
data at t =0

2
n = n,.(x) x &« R”,
(1.5) / 0
1 um= uo(x,y) in 2

ol

where no = 2(0). Local existence theorems for (1.1)-(1.5) are
proved for both cases with or without considering surface tension
([1].,[2]). The problem of existence global in time for (1.1)-

(1.5) neglecting the surface tension (8 = 0) has a difficulty

which was pointed out in [1]). However if the surface tension is
taken into account, the following global existence and regularity s

theorea is proved. SN




g il ;‘.;‘,-‘5..',.‘.'\..‘!._J.Z”.i.‘f-'.‘,, PRI I AR A

Theorem 1.1 ([2])

Let 3 < r < 7/2. Assume the compatibility conaitions on

the initial date:

v ou, = o in R4,
(1.6) 1 ((tag)y . + (Ug)g x )Bg)ean = O OB ¥ = ngix).
u, = o on y= qo(x).

There exists 50 > 0 such that If the initial data satlsry

<8

(1.7) Ey = 174l + gl '
) 0 g% (r2) 0’ gr-1/2 0

(2,)

then there exists a unique globa! solution g,u,p of (1.1)-

(1.8), which satisties

(1.8) n & E¥*/2(gYR?), u « KT (R*xR(t)), vp € KF 3(R*xa(t)).
Further, given any T, > O and any k > O, there exists &5, >
such that If

(1.9) ‘o < 61

then the solution becoaes saooth for ¢t > Ti’ !l.e,.,

“r+k+l/2 r+k

(1.10) ne K ((T,.)xR%), u « K*E((1, mxa(t)),

r+k-2

vp e K ((Tl") x 2(t)).

-3=
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In particular the solution with k 2 2 is classical. Here

Hr(-) is the usual Sobolev space with norm | |r on the domain
°. x'((rl,rz) x 2(t)) 1is composed of the restriction to the

fluid domain 2(t) of the functions belonging to
(1.11) K" ((T,,T,)xR%) =
1((1,.1,):8 (&%) n 87/ 2((1,,1,).8%R%)).

n e ir(R+ x Rz) is defined as follows: n e x’((o,r) x Rz) for
any T >0 and g = 7, + 0, such that 7, ¢ Kr(R+ x Rz) and

1

7, is the Pourier transform in space-time of L function of

bounded support. See [2] for the details of the function spaces.

In this summary we give an asymptotic decay rate for the

solution of the above theorea.

Theorem 1.2. 1I¢ no ¢ LI(RZ), then there exists 8, > 0 such

2
that irf

(1.12) E, s E, + |q°|Ll <s, .

then the solution has the decay rate:

1% ()1, < CB (1 + £)"11%)/2 4 0 g,4,2

lult) iy, |9P(t) 1y < CE (1 + t)"L,
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In 2 we transform the free boundary problem (1.1)-(1.5) to an
equivalent one on a fixed domain and reduce the components of the
stress tensor to zero. The linear decay estimate is discussed in

%3 and the nonlinear one in V4.

$2. Reduction of the Problem.

We recall some of the main ideas for the reduction of the
free surface problem in [(2]. First we use the transformation of
the free boundary problem (1.1)-(1.5) to that on the fixed
(equilibrium) domain: 2 = {x « R%,-b < y < 0}. Given n(t,x)

we extend it for yv < 0 as follows:
(2.1) nit,x,y) = r et 1Y p(e,e)),

where 5(t,t) is the Fourier transform with respect to x and

-1

F is the inverse. If gp(t,-) belongs to H'(SF). then

s+1/2

a(t,-,-) belongs to H (a), where S now denotes the upper

F
surface y = 0 of 2. For each t > 0 we define the transfor-

mation @€ on f onto R(t) = (x € Rz,—b <y <npl(t,x)}) by
{2.2) O(xl,xz,y;t) - (xl,xz,a + y(1 + ;/b)).

The vector field u on 2(t) = e(R) is defined from the vector

field v on 2 by
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(2.3) u1 = .i.xj vJ/J s °1J vJ,
where J is the Jacobian determinant of d¢ = (¢, _ ) iﬁi'
’ 3 B
= 1+0n/b+n,(1+y/b). This map preserves the property of e
ot
being divergence free, that is, v - v=0 4in @ 1iff v - u =90 iﬁﬁ
in a(t). -

Using the transformation (2.2), (2.3) and

-1 e
; - clj 01(aik vk), where ¢ = (d9) and so on, we can Q*;"

rewrite the free surface problem (1.1)-(1.5) as one on the

ui,x

equilibrium domain 2 as follows: i

(2.4) qt - Vg = (o] on -]

FI
(2.5) Ve =V 4V + vg = !'(ay,v,vq)1
(2.6) v -vs=s 0 S in g,
(2.7) veo on s, \
(2.8) v + v -P.(7,v), 1=1,2 —
i,x, 3,x, 1 1 on Sg. R
(2.9) q-2v v, - (g-p4)np =P (q,V)’ ;i&?
'xa 3 '.*.:"E‘.

Here we have gathered the linear terms on the left hand side and

all the nonlinear terms on the right hand side of the equation.
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Next we reduce the tangential component of the stress tensor

P,, 1 =1,2 to zero: Given F, e Hr'alz(sr), i = 1,2, choose

r+l

the vector 2z € H (a) satisfying the condition

2 - _
f z =0, oY z=0, ay 2z (Fz, FI,O) on SF,
1z =0, ay z2 =0 on SB’

Then w = v x z satisfies
w

= 0, = P

3 "i,x + ws'x G i=1,2 on Sr,
3 i .
v - w= 0 in a2 ,
"3 = 0 on SF'

Therefore g, v' = v - w, q satisfy the system (2.4)-(2.9) with

the replacements F bY r‘ = F - W + vdw and P

0. The prime in v' 1is omitted hereafter.

'L i=1,2 by

Finally we rewrite the system (2.4)-(2.9) with F = ?‘,
Fi =0, 1=1,2, for p,v,q in the operator form. Let P be
the projection on the subspace of solenoidal vectors orthogonal
to the subspace Gr’ = (vP: P « H'(a), » = 0 on S,) of H(r),
i.e.,

(2.10) H° « pr? o ar°.

Applying P to (2.5) we have

(2.11) v, - vPdv 4+ Pvqg = PF‘.

t
Here Pvq can be decomposed to three parts as follows:

-7 AN
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pvqg = ex (1) 4 ox(2) vx(a), E?e

- \.:.:

o

(1) SN

where «x , 1 =1,2,3, are defined by -

R(l) - Zvva'xs, R(z) = gp - pan, R(a) = Fa on SF'
(2.12) axli) o in o,
Oyﬂ(i) = 0 on SB .
We define
A v = -Pdv + vx(l) .
(2.13) { Rv = v3|s ’

P
R'((q - p4)np) = wel2) |

Using these notations the system (2.4),
(2.14)

(2.11) has the form
N, = Rv,

(2.15) ve + AV + R ((g - pa)y) = £,

where f(7,v,vq) = pr‘ - vx(a)

. We regard (2.6), (2.7), (2.8)

1 " 0 as domain conditions on A.

with P




3. Rates of Decay for the Linear Problem
We investigate the decay rate of the solution of the

inearized equations

3.1) qt = Ru ,
3.2) u, + Au + R.((g - pd)p) =0 ,
3.3) n(0) = Mo+ u(0) = u, at t = 0.

'hese are supplied with the conditions:

(3.4) v-u=20 in & ,
(3.5) ui,xa + us'xi =0, 1=1,2 on SP'
(3.6) ua=20 on S..

Theorem 3.1. lLet 22 = |q°|L1 + '00'5/2 + |uo|°. Then the solu-

tion of (3.1)-(3.6) has the decay rate (t 2z 1):
a -(1+x)/2
| q(t)]o < COE2 t r 0SS ax 5/2,
(3.7)

lutt)l, scC -1,

0Byt
The theorem is proved in several steps.
Let % = (v= (g,u): n e u’(sr), u e PHo(n)). where

(p,q)1 = g(p,q)o + p(vp,vq)° is the inner product of nl(sr)
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X and set W = {(v: p e ns/z(sr), ue Puz(n) and u satisfies ;
g )
i (3.4), (3.5), (3.6)). Let us define the operator o
2 -
.2 0 R n .
) (3.9) Gvs= . on D(G) < %, F
-R (g-p4)g -A u -,
and consider its closed extension which will be denoted by G ﬁ
again. i

Lemma 3.2. The operator G generates a contraction so.lgrodp
- etG on %X, and W < D(G). i

Consider the resolvent equation:

o-of) - =

The resolvent of G can be extended in to the left half-plane,

as shown in lemmas 3.3-3.5.

J@7 .St

Lemma 3.3. For any To > 0 there exists o > 0O such that if

A e (A =0 + 1ir, -c°|r| <o <rT It > r

o' o)l

then the solution of (3.10) has the estimate

-10-




ot
.
PLE

2'0%4 "0

T——

N« AOOE RN
" AL P
AR RN

\‘; RN I I
Wttt
(ol MO SO

NSRS

DR

-1
(3.211) Jul, + 1Allulg + A" Rulg,, + 1915,5 + 1211014,
S ClIfly + Ihlg,) -

We treat the resolvent near A = ¢ in two cases separately: (1)
the supports of ﬁ(t), E(t,y) belong to (j¢| 2 to}; (11) the
supports belong to (|t| < to}. Here ~ means the Fourier

transform with respect to x.

Lemma 3.4. For any ‘o > 0 there exists ro > 0 such that if

A€ ([A] < and the supports of h(t), £(¢,y) belong to

o}
(It} =2 co), then the resolvent equation (3.10) has the solution

(p.,u) satisfying
Let G(t) be the Fourier transform of G with respect to x.

Lemma 3.5. There exist c1 >0 eanda TyiTy with u(alzb)2 > r,

>r, >0, such that If r, < |A] < T,, then (A - G(¢))~ ! exists

1 1 2’
for |t| < (1. For small ¢ there is a one-dlmensional eigen-

space which |s analytic with respect to ¢. The eigenvalue and

eigenvector have the following expansions.

-11-

LI -
PR
SR .
St T
‘-.n P

.’ %

.
0‘.

#

A
\_v.'\..';

RERT

ACKA P
R AR
9 s v

."’ .

‘.’l.’
b

Leiv e s e mmy . . . ..

* '.-.'-..".I.l.-.!.a "" .'A-. "'p"‘-"-A
LN A R e ) AL A |
AP T A e PR NN

l"'
,
. &

s e
’ ’t_"a_“n

B

TAN]
.
" "

o I e

e
L 200 B
.
)
L

“

.
.

o AN R AP e AR
RO R I LI LN
LY ) ‘e ” e *¢ 2 ¥
e "
N [ L A ) _-' ER .

~ere- e v . -
J YT INEAR
. o & 8 2 Te 8 »
. LTt

AR R




Bt
N aarh

A .

o
LK AR A

e e

"a
-':'l’.".l

.
-‘l

gkn‘\ M. »

ron”
a A0k

¥

RN "‘I

"

.. - - -
RN
ARLR L LREY

. . . - AR ) . . g bl T ot W, B, A
Sy shi iRy POt P 5o P ApJup i Pl i P IVILERRAR AN I | 9617 At TSR A T p9% Nar Pl = . R Pl et e Pl B LGRSl

e

A= ~(gb3/av)1e12 + o161
1+ 0(1¢12),

”-
(3.13) { u, = 1(th/2v)(v2-b2) +0(1t13), 3 =1,2,
ug = (gl¢12/20) (v%/3-b2y-2b%/3) + o(1014).

By using lemmas 3.2-3.5 the decay estimate (3.7) can be proved by

the transformation of the integral path of the representation

o+ir
= 1im I e“t(A-G)-lv° dr, o0>0
T " og-1ir

(3.14) v(t) = etho

to the left half-plane.

4. Nonlinear Decay Estimates.

The free surface problem (1.1)-(1.5) was reduced to the

following system in 2.

(4.1) 7y = Rus=0,
(4.2) w, +Au+ R ((g - pa)g) = ¢ ,

where f consists of nonlinear terms depending on 7, u, vp and

their derivatives.

=12~
‘\ ®e -
RIS
P AR T . .o R B A R N
. . e Gt e N, - ot . PRI T -t ANAY IR RN ) e .
a‘h.»::.-"'.-") 2, 4-1-1-::*’.:.-_ G : N N AL NN RN --:' !
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The initial value problem (4.1)-(4.3) has a unique solution
(Theorem 1.1) which becomes smooth for t 2 T1 > 0. Namely we

know that it !O < 61. then

alt) € c(0,»;8%/2), 1.e., n(t) € c(0,=;K%),

(4.4) { )
u(t) €« C(0,2;H"), and

(4.5) n &« K'((1,#) x ), ult) ¢« K&((1,#) x n).

Let us define

M{g,u:;t) = max{ max sup (1+s)(1+°)/2lna;(s)|o R

a=0,1,2 O<sst

| (4.6) sup (1+8)2/2 D% (8)1,. sup (1+s)ju(s)1,).
. Oss<t O<s<t
| E(p,u) = |9|. + |uf .
K7((1,#)xa) KS((1,#)xn)
Since the linearized equation is solved by the semigroup ete on

% in %3, this solution satisfies the variation of constants

formula:
tG t (t-s)G
(4.7) vit) = e v, + j e £(s)ds,
0
= (7 - (9
where v (u) and ¢ (f(q,u,vp))‘

]33~
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The first term of (4.7) was already estimated in 83, i.e., e

9. (t) L
(4.8) [ o(t) = etG[uo] has the decay rate:
Y 0 3
- £ e
16%4(t) 1y S CHE, t (14a)/2 < 4 5 8/2, 1.e., i )
|°a‘;o‘t”o sc, 2, go(1ve)/2 2 5,1,2, and A
{ 3" -3/2 Ry
(4.9)  [1D7a4(t) ]G S Co Ky ¢ , O

t~1 R

lug(t)|, =G, E, . 3

It is sufficient by (4.4) to prove the decay rate for ¢t 2 2.

Let us decompose the second term of (4.7) into three parts

t ) t/2 t-1 t
(t-s)G -
(4.10) Io(e .t(.)])ds Io { }ds + ‘[tlz{ }ds + It-l( }ds

RS SR
= (t) + (t) + (t) . ‘
¥ 4y Uy

Lemma 4.1. Let !3 = |q|3 + |u|2 + |Dp|°. We have the esti-

setes:
IP)g S C(Eg)((1Dgl, + |ul,)(IDa), + jul, + |Dp|y)
+ |5|L.(|n’u|° + 10ply)).
(4.11) |DF|, s C(B,){((IDg], + lul.‘,)(lmlul3 + luly + 1DP[,)
+ |5|L.(|D3ulo + Iszlo))- ?;'-';2'_332;
10?01 S C(Ry)((IDF1, + |ul,)(IDAl + lulg + IDPI,) L
~ - 2~ ¢ 3 o
+ + + |D D D . R
(191 o + 1991 o + 19%1 0108l + 1D%p1g)) ; i
s
=14~ .':\'.‘:':

.-
-
‘
-
0
‘.
B

Py




Let !1. 1=1,2,3 on 2 be the extension of r1 on sr by

using 7 for 5. We have il
S
RS

(4.12) IZylo < C(B3)(IDaly + 0l S)Iul, NS

1

D“ ;1. a = 1,2,3, have the same estimate as Da- F as above.

Therefore ¢ has the same estimate as (4.11).

Lemma 4.2. For t 2 2, we have for i = 1,2

3/2

(4.13) M(p,,u,:t) £ C sup (1 + s) j€(s)]
1’1 1 ossst 0
£C,C(E,)M(n u~t)2-
1 3 ’ ]
Also we have for { = 3
(4.14) Ming,ug;t) s ¢, sup (1 +8)%3 1),
t-igsgt

S C,C(E )M(n,u;t)(M(q,u;t) + E(g,u)) .

This is proved by Theorem 3.1 and by Lemma 4.1 and Sobolev-

Nirenberg's inequality [4]. In particular, we know that since by
~ 6 5
{(4.8) p(t) and u(t) are bounded in H and H respectively

for any t 2 1, we have by (4.6) for any t 2 1



3+4a t(c—3)/2'

10" a(t)i, s © a=1,2,

2+a

D" wit)), s ¢ ¢4/, a a2

Proof of Theorem 1.2. It follows from (4.9) and Lemma 4.2 that

M(7,u;t) S C.E, + cicu(n.u;t)2

072
+ czcu(q,u;t)(u(q,u;t) + E(g,u)).

E <8

Therefore there exists 8_ > 0 such that if E_< &8 o 1’

2 2 2’
then
M(7,u;t) < C E, .

This proves Theorem 1.2.

Remark. If the fluid has an infinite depth, the eigenvalue of

G(t) has the following expansion:

(4.185) Ae) =2 Jglel - 2vie)? - oy 2tY

which is quite different from (3.13). The details will be

published elsewhere.
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